Relationship Between Power Sequences And Their $(\mathrm{N}-1)^{\text {th }}$ Difference Sequence

Anant Saxena

Abstract

This paper seeks to find a relation between terms of power sequences such as square and cubic sequences and their ($n-1$)th difference sequences

Index Terms-Arithmetic Progression, Power Sequences, Difference Sequences, Factorial

1 Introduction

IT is said that there is no relationship between squares of natural numbers. But that is not so. There is definite pattern their difference is an arithmetic progression. Similar thing happens with cubic sequence. Its second difference is in arithmetc progression. And these arithmetic progression's common difference is the factorial of the power. This paper seeks to elucidate this pattern and reach a definite theorem

2 TERMS USED IN PAPER

2.1 Power Sequences with base \mathbf{N}

Sequence of all whole numbers raised to power N Example-
Power sequence with base 2

0	1	4	9
	64	81	100

Power sequence with base 3

0	1	8	27

$343 \quad 512 \quad 729$
16
25

2.2 $\mathbf{N}^{\text {th }}$ Difference Sequences

$0^{\text {th }}$ difference sequence-The sequence itself
$1^{\text {st }}$ difference sequence-Sequence of difference between the successive terms of power sequence
$2^{\text {nd }}$ difference sequence- Sequence of difference between successive terms of 1st difference sequence
$3^{\text {rd }}$ difference sequence- Sequence of difference between successive terms of 2 nd difference sequence

3 HYPOTHESES

$(\mathrm{N}-1)^{\mathrm{th}}$ difference sequence of Power sequence with base N would be an arithmetic progression with common difference as N !

4 Proofs

4.1 PROOF OF THEOREM FOR $\mathbf{N}=1$

Hypothesis based on equation
As $\mathrm{N}=1$, so
$(1-1)^{\text {th }}$ difference sequence would be an arithmetic progression with common difference $=1$!
$=>0^{\text {th }}$ difference sequence would be an arithmetic progression with common difference=1

But as $0^{\text {th }}$ makes no sense so it is $1^{\text {st }}$ difference sequence. Its similar to as $0!=1$!
Proof
Power sequence with base 1

0	1	2	3	4	5	6	7
	8	9	10				

$0^{\text {th }}$ difference sequence

0	1	2	3	4	5	6	7
	8	9	10				

Common difference $=1$

As proof justifies hypothesis thus the theorem is proven

4.2 PROOF OF THEOREM FOR N=2

Hypothesis based on equation
For N=2, so Hypothesis based on equation
At $\mathrm{N}=2$, so
$(2-1)^{\text {th }}$ difference sequence would be an arithmetic progression with common difference $=2$!
$=>1^{\text {st }}$ difference sequence would be an arithmetic progression with common difference $=2$

Proof							
Power sequence with base 2							
0	1	4	9	16	25	36	49
	64	81					
$1{ }^{\text {st }}$ difference sequence							
1	3	5	7	9	11	13	15
	17	19					

Common difference $=2$

As proof justifies hypothesis thus the theorem is proven

4.3 PROOF OF THEOREM FOR N=3

Hypothesis based on equation
For $\mathrm{N}=3$, so Hypothesis based on equation
At $\mathrm{N}=3$ so
$(3-1)^{\mathrm{th}}$ difference sequence would be an arithmetic progression with common difference $=3$!
$=>2^{\text {nd }}$ difference sequence would be an arithmetic progression with common difference $=6$

4.4 PROOF OF THEOREM FOR $\mathrm{N}=4$

Hypothesis based on equation
For $\mathrm{N}=4$, so Hypothesis based on equation
At $N=4$, so
$(4-1)^{\text {th }}$ difference sequence would be an arithmetic progression with common difference $=4$!
$=>3^{\text {rd }}$ difference sequence would be an arithmetic progression with common difference $=24$

Proof

Power sequence with base 4

\left.| 0 | 1 | 16 | 81 | 256 | 625 | 1296 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| | | | | | | | | 2401 | 4096 | 6561 |$\right) 10000$

Common difference $=6$

As proof justifies hypothesis thus the theorem is proven

4.5 PROOF OF THEOREM FOR N=5

Hypothesis based on equation
For $\mathrm{N}=5$, so Hypothesis based on equation
At $N=5$, so
(5-1)th difference sequence would be an arithmetic progression with common difference $=5$!
$=>4$ th difference sequence would be an arithmetic progression with common difference $=120$

Proof

Power sequence with base 5 :

0	1	128	243	1024	3125	7776

4.6 PROOF OF THEOREM FOR $\mathrm{N}=6$

Hypothesis based on equation
For $N=6$, so Hypothesis based on equation
At $N=6$, so
$(6-1)^{\text {th }}$ difference sequence would be an arithmetic progression with common difference $=6$!
$=>5^{\text {th }}$ difference sequence would be an arithmetic progression with common difference $=720$

Proof					
Power sequence with base 6					
01	64	729	4096	15625	
46656	117649	262144	531441	10000	
$1{ }^{\text {st }}$ difference sequence:					
163	665	3367	11529	31031	70993
144495	269297	468559			
$2^{\text {nd }}$ difference sequence:					
62602	2702	8162	19502	39962	73502
124802	199262				
$3{ }^{\text {rd }}$ difference sequence:					
5402100	5460	11340	20460	33540	51300
74460					
$4^{\text {th }}$ difference sequence:					
15603360	5880	9120	13080	17760	23160
$5^{\text {th }}$ difference sequence:					
18002520	3240	3960	4680		
Common dif	erence $=$	720			

As proof justifies hypothesis thus the theorem is proven

4.7 PROOF OF THEOREM FOR N=7

Hypothesis based on equation
For $N=7$, so Hypothesis based on equation
At $N=7$, so
$(7-1)^{\text {th }}$ difference sequence would be an arithmetic progression with common difference $=1$!
$=>6^{\text {th }}$ difference sequence would be an arithmetic progression with common difference $=5040$

Proof

Power sequence with base 7
$\left.\begin{array}{lllllll}0 & 1 & 128 & 2187 & 16384 & & 78125 \\ \text { 279936 } & 823543 & 2097152 & 4782969 & 10000000\end{array}\right)$

As proof justifies hypothesis thus the theorem is proven

5 Conclusion

As theorem can be proven for all natural numbers similar to above proofs. Hence, it's a valid theorem. I propose to call it Saxena Theorem

