Relationship Between Power Sequences And Their (N-1)th Difference Sequence

Anant Saxena

Abstract— This paper seeks to find a relation between terms of power sequences such as square and cubic sequences and their (n-1)th difference sequences

Index Terms— Arithmetic Progression, Power Sequences, Difference Sequences, Factorial

1 INTRODUCTION

T is said that there is no relationship between squares of Inatural numbers. But that is not so. There is definite pattern their difference is an arithmetic progression. Similar thing

happens with cubic sequence. Its second difference is in arithmetic progression. And these arithmetic progression's common difference is the factorial of the power. This paper seeks to elucidate this pattern and reach a definite theorem

2 TERMS USED IN PAPER

2.1 Power Sequences with base N

Sequence of all whole numbers raised to power N Example-

Power sequence with base 2

	· · · · · · · · ·						
0	1	4	9	16	25	36	49
	64	81	100	1.10			
Powe	er sequen	ce with b	ase 3				
0	1	8	27	64	125	216	
	343	512	729	1000			

2.2 Nth Difference Sequences

0th difference sequence-The sequence itself

1st difference sequence-Sequence of difference between the successive terms of power sequence

2nd difference sequence- Sequence of difference between successive terms of 1st difference sequence

3rd difference sequence- Sequence of difference between successive terms of 2nd difference sequence

3 HYPOTHESES

(N-1)th difference sequence of Power sequence with base N would be an arithmetic progression with common difference as N!

PROOFS 4

4.1 PROOF OF THEOREM FOR N=1

Hypothesis based on equation

As N=1, so

(1-1)th difference sequence would be an arithmetic progression with common difference=1!

=>0th difference sequence would be an arithmetic progression with common difference=1

But as 0th makes no sense so it is 1st difference sequence. Its similar to as 0! = 1!

Proof Power sequence with base 1 1 4 5 7 0 2 3 6 8 9 10 0th difference sequence

4

5

6

7

0 1

8

Common difference =1

As proof justifies hypothesis thus the theorem is proven

3

10

4.2 PROOF OF THEOREM FOR N=2

2

9

Hypothesis based on equation For N=2, so Hypothesis based on equation

At N=2, so

(2-1)th difference sequence would be an arithmetic progression with common difference=2!

=>1st difference sequence would be an arithmetic progression with common difference=2

Proc	of								
Power sequence with base 2									
0	1	4	9	16	25	36	49		
	64	81	100						
1 st difference sequence									
1	3	5	7	9	11	13	15		
	17	19							

Common difference =2

As proof justifies hypothesis thus the theorem is proven

4.3 PROOF OF THEOREM FOR N=3

Hypothesis based on equation

For N=3, so Hypothesis based on equation

At N=3 so

(3-1)th difference sequence would be an arithmetic progression with common difference=3!

=>2nd difference sequence would be an arithmetic progression with common difference=6

Pro	of									
Pov	Power sequence with base 3									
0	1	8	27	64	125	216				
	343	512	729	1000						
1 et a	1 st difference sequence									
		-								
1	7	19	37	61	91	127				
	169	217	271							
2 nd difference sequence										
6	12	18	24	30	36	42	48			
0	12 54	10	<u> 24</u>	50	50	42	40			

Common difference =6

As proof justifies hypothesis thus the theorem is proven

4.4 PROOF OF THEOREM FOR N=4

Hypothesis based on equation

For N=4, so Hypothesis based on equation

At N=4, so

(4-1)th difference sequence would be an arithmetic progression with common difference=4!

=>3rd difference sequence would be an arithmetic progression with common difference=24

Proof

F700	'J									
Pow	Power sequence with base 4									
0	1	16	81	256	625	1296				
	2401	4096	6561	10000						
1st d	ifference	sequence	5							
1	15	65	175	369	671	1105				
	1695	2465	3439							
2^{nd} (lifference	e sequenc	e							
14	50	110	194	302	434	590				
	770	974								
3rd d	3 rd difference sequence									
36	60	$8\overline{4}$	108	132	156	180				
	204									
Con	Common difference =6									

As proof justifies hypothesis thus the theorem is proven

4.5 PROOF OF THEOREM FOR N=5

Hypothesis based on equation

For N=5, so Hypothesis based on equation At N=5, so

(5 1)th difference

(5-1)th difference sequence would be an arithmetic progression with common difference=5!

=>4th difference sequence would be an arithmetic progression with common difference=120

Proof

Power sequence with base 5:

0	1	128	243	1024	3125	7776

	16807		32768		59049	100000
1 st c	lifference	sequen	æ			
1	31	$2\bar{1}1$	781	2101	4651	9031
	15961		26281		40951	
2nd						
30	180	570	1320	2550	4380	6930
	10320		14670			
3rd			differen	ce		sequence:
150,390	0,750,1230),1830,25	550,3390,4	350		-
4th	difference	e sequer	nce: 240,36	60,480,60	0,720,840,	960

Common difference =120

As proof justifies hypothesis thus the theorem is proven

4.6 PROOF OF THEOREM FOR N=6

Hypothesis based on equation

For N=6, so Hypothesis based on equation

At N=6, so

(6-1)th difference sequence would be an arithmetic progression with common difference=6!

=>5th difference sequence would be an arithmetic progression with common difference=720

Proof									
Powe	Power sequence with base 6								
0	1	64	729	4096	15625				
	46656	117649	262144	531441	1000000)			
1st di	fference s	sequence	:						
1	63	665	3367	11529	31031	70993			
	144495	269297	468559						
$2^{nd} d$	ifference	sequence	e:						
62	602	2702	8162	19502	39962	73502			
	124802	199262							
3 rd di	fference	sequence	:						
540	2100	5460	11340	20460	33540	51300			
	74460								
4 th di	4 th difference sequence:								
1560	3360	5880	9120	13080	17760	23160			
5 th difference sequence:									
1800	2520	3240	3960	4680					
Common difference =720									

As proof justifies hypothesis thus the theorem is proven

4.7 PROOF OF THEOREM FOR N=7

Hypothesis based on equation For N=7, so Hypothesis based on equation

IJSER © 2021 http://www.ijser.org

At N=7, so

(7-1)th difference sequence would be an arithmetic progression with common difference=1!

=>6th difference sequence would be an arithmetic progression with common difference=5040

Proof Power sequence with base 7 0 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000 1st difference sequence: 2059 1 127 14197 61741 201811 543607 1273609 2685817 5217031 2nd difference sequence: 126 1932 12138 47544 140070 341796 730002 1412208 3rd difference sequence: 1806 10206 35406 92526 201726 388206 682206 1119006 4th difference sequence: 8400 25200 57120 109200 186480 294000 436800 5th difference sequence: 1680031920 52080 107520 142800 77280 6th difference sequence: 25200 30240 1512020160 35280 Common difference =5040

As proof justifies hypothesis thus the theorem is proven

5 CONCLUSION

As theorem can be proven for all natural numbers similar to above proofs. Hence, it's a valid theorem. I propose to call it Saxena Theorem